Airborne retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: application to AVIRIS-NG Thorpe, A. K.¹, Frankenberg, C.^{1,2}, Thompson, D. R.¹, Duren, R.M.¹, Aubrey, A. D. ¹, Bue, B. D.¹, Green, R. O.¹, Gerilowski, K.³, Krings, T.³, Borchardt, J.³, Kort, E. A.⁴, Colm Sweeney⁵, Conley, S.^{6,7}, Roberts, D.A.⁸, Dennison, P.E.⁹ ¹ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, United States ² California Institute of Technology, Pasadena, California, United States ³ Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany ⁴ University of Michigan, Ann Arbor, United States ⁵ Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, United States ⁶ Global Monitoring Division, NOAA Earth System Research Laboratory, Boulder, Colorado, United States ⁷ Scientific Aviation, 3335 Airport Road, Boulder, CO, United States ⁸ University of California, Santa Barbara, Santa Barbara, California, United States ⁹ University of Utah, Salt Lake City, Utah, United States - Next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) - Pushbroom sensor - 36° field of view - 380 to 2,510 nm - 5 nm spectral resolution - 427 spectral channels CH₄, CO₂, and H₂O absorption features - Iterative maximum a posteriori-DOAS algorithm (Frankenberg et al., 2005) - Adjusts vertical column densities of multiple gasses until total optical density fits the observed measurement #### CH₄ retrieval (Thorpe et al., 2014): # $32 \times 22 \text{ km}$, $704 \text{ km}^2 \text{ region}$: $32 \times 22 \text{ km}$, $704 \text{ km}^2 \text{ region}$: $32 \times 22 \text{ km}$, $704 \text{ km}^2 \text{ region}$: - San Juan Basin (Four Corner: Colorado, New Mexico) - Coal bed CH₄ - 20,000 oil and gas wells CH₄ enhancement observed with SCIAMACHY satellite (Kort et al., 2015) - AVIRIS-NG flight boxes target SCIAMACHY hotspot - Black: Survey (3 km above ground level, 3 m pixels) - White: Directed study (1 km above ground level, 1 m pixels) #### Example 1: Coal mine ventilation shaft emissions (a) 20 April 2015, 18:06:24 UTC #### Example 1: Coal mine ventilation shaft emissions (a) 20 April 2015, 18:06:24 UTC (c) 20 April 2015, 18:06:24 UTC (d) Google Earth: 15 March 2015 (b) CH₄: 20 April 2015, 18:06:24 UTC #### Example 1: Coal mine ventilation shaft emissions Example 1: CH₄ retrieval radiance fits # Example 2: Gas processing plant (a) 20 April 2015, 16:07:19 UTC (b) CH₄: 20 April 2015, 16:07:19 UTC #### Example 2: Gas processing plant (a) 20 April 2015, 16:07:19 UTC (c) 20 April 2015, 16:07:19 UTC (b) CH₄: 20 April 2015, 16:07:19 UTC (d) Google Earth: 16 March 2015 # Example 3: Tank emissions (a) 19 April 2015, 22:11:27 UTC 0.1 km #### Example 3: Tank emissions (a) 19 April 2015, 22:11:27 UTC (c) 19 April 2015, 22:11:27 UTC (d) Google Earth: 15 March 2015 (b) CH₄: 19 April 2015, 22:11:27 UTC #### Example 3: Tank emissions (d) Google Earth: 15 March 2015 (b) CH₄: 19 April 2015, 22:11:27 UTC (e) CH₄: 21 April 2015, 17:04:17 UTC Example 3: Tank emissions (CH₄ thermal camera) # Example 4: Natural source at "Moving Mountain" (b) CH₄: 23 April 2015, 18:34:18 UTC #### Example 4: Natural source at "Moving Mountain" (a) 23 April 2015, 18:34:18 UTC (b) CH₄: 23 April 2015, 18:34:18 UTC 00 00 00 CH₄ ppm•m enhance. 0.02 km (c) 23 April 2015, 18:34:18 UTC (d) Google Earth: 11 Aug. 2015 # Example 5: Pipeline leak (a) 19 April 2015, 18:35:12 UTC (b) CH₄: 19 April 2015, 18:35:12 UTC #### Example 5: Pipeline leak (b) CH₄: 19 April 2015, 18:35:12 UTC (a) 19 April 2015, 18:35:12 UTC enhance. 1000 500 0.04 km (c) 19 April 2015, 18:35:12 UTC (d) Google Earth: 15 March 2015 Example 5: Pipeline leak (CH₄ thermal camera) Example 5: Operators shut down pipeline (a) 12 Sept. 2014, 19:23:59 UTC (b) CO₂: 12 Sept. 2014, 19:23:59 UTC 1.5 2000 1.1 1.5 1.0 1000 2 1.1 1.5 1000 2 1.1 1.5 1000 2 1.1 1.5 1000 2 1.1 1.5 1000 2 1.1 1.5 1000 2 1.1 1.5 1000 2 1.1 1.5 1000 2 1.1 1.5 1000 2 1.1 1.5 1000 2 1.1 1.5 1000 2 1.1 1.5 1000 2 1.1 1.5 1000 2 1.1 1.5 1000 2 1.1 1.5 1000 2 1.1 1.5 1000 2 1.1 1.5 1000 2 1.1 1.5 1.5 1000 2 1.5 1.5 1000 2 1.5 1.5 1000 2 1.5 1.5 1000 2 1.5 1.5 1.5 1000 2 1.5 1.5 1000 2 1.5 1.5 1000 2 1000 2 2 (a) 12 Sept. 2014, 19:23:59 UTC (c) 12 Sept. 2014, 19:23:59 UTC (b) CO₂: 12 Sept. 2014, 19:23:59 UTC Example 6: CO₂ and H₂O retrieval radiance fits Observed CH₄ plumes Observed CH₄ plumes (Frankenberg et al., 2016) Observed CH₄ plumes (Frankenberg et al., 2016) # Source categories | Total
flight
hours | Total
ground
coverage
(km²) | Source category | Specific source | Number
of plumes | Percentage of total | |--------------------------|--------------------------------------|--------------------------|-----------------------------------|---------------------|---------------------| | 9.2 | 2,530.8 | Natural gas production | Possible well completions | 10 | 3.9% | | | | | Wellpad insfrastructure | 135 | 52.5% | | | | | Tanks | 64 | 24.9% | | | | | Gas processing plants | 7 | 2.7% | | | | | Unknown facility | 15 | 5.8% | | | | | Unknown infrastructure | 2 | 0.8% | | | | Natural gas transmission | Buried natural gas pipeline leaks | 3 | 1.2% | | | | Coal mining | Mine ventilation shaft | 1 | 0.4% | | | | Geological (terrestrial) | Coal bed CH ₄ seeps | 2 | 0.8% | | | | Unknown | | 18 | 7.0% | | | | Total | | 257 | 100.0% | - AVIRIS-NG permits quantitative mapping of CH₄, CO₂, and H₂O emissions - Offers the potential to: - Map large areas rapidly - Identify unknown emission sources (i.e. natural gas pipeline leaks) - Better understand partitioning of anthropogenic and natural emission sources - JPL: - AVIRIS/AVIRIS-NG team - Simon Hook and Bill Johnson (thermal camera) - NASA: - Jack Kaye (Four Corners campaign) (a) 12 Sept. 2014, 19:23:59 UTC (b) Google Earth: 2 Sept. 2014 Orbital Hyperion instrument and AVIRIS also observed CH₄ plume (Thompson et al., 2016) # Hyperion (10 nm): 1/1/16, 16:39 UTC Low Earth orbit Orbital Hyperion instrument and AVIRIS also observed CH₄ plume (Thompson et al., 2016) Hyperion (10 nm): 1/1/16, 16:39 UTC Low Earth orbit AVIRIS (10 nm): 1/12/16, 20:25 UTC 6.6 km above ground level CH₄ from Olinda Alpha Landfill (Krautwurst et al., 2017) CH₄ from Olinda Alpha Landfill - 1 nm spectral resolution for improved gas sensitivity - Quantitative mapping of CH₄, CO₂, H₂O, CO, N₂O - NRC RFI #2: Understanding anthropogenic methane and carbon dioxide point source emissions (Duren et al., 2016)